53 research outputs found

    Expression quantitative trait loci as possible biomarkers on depression

    Get PDF

    Expression quantitative trait loci as possible biomarkers on depression

    Get PDF

    Re-Annotator: Annotation Pipeline for Microarray Probe Sequences

    Get PDF
    Microarray technologies are established approaches for high throughput gene expression, methylation and genotyping analysis. An accurate mapping of the array probes is essential to generate reliable biological findings. However, manufacturers of the microarray platforms typically provide incomplete and outdated annotation tables, which often rely on older genome and transcriptome versions that differ substantially from up-to-date sequence databases. Here, we present the Re-Annotator, a re-annotation pipeline for microarray probe sequences. It is primarily designed for gene expression microarrays but can also be adapted to other types of microarrays. The Re-Annotator uses a custom-built mRNA reference database to identify the positions of gene expression array probe sequences. We applied Re-Annotator to the Illumina Human-HT12 v4 microarray platform and found that about one quarter (25%) of the probes differed from the manufacturer's annotation. In further computational experiments on experimental gene expression data, we compared Re-Annotator to another probe re-annotation tool, ReMOAT, and found that Re-Annotator provided an improved re-annotation of microarray probes. A thorough re-annotation of probe information is crucial to any microarray analysis. The Re-Annotator pipeline is freely available at http://sourceforge.net/projects/reannotator along with re-annotated files for Illumina microarrays HumanHT-12 v3/v4 and MouseRef-8 v2

    DeepWAS: Multivariate genotype-phenotype associations by directly integrating regulatory information using deep learning

    Get PDF
    Genome-wide association studies (GWAS) identify genetic variants associated with traits or diseases. GWAS never directly link variants to regulatory mechanisms. Instead, the functional annotation of variants is typically inferred by post hoc analyses. A specific class of deep learning-based methods allows for the prediction of regulatory effects per variant on several cell type-specific chromatin features. We here describe \textquotedblDeepWAS\textquotedbl, a new approach that integrates these regulatory effect predictions of single variants into a multivariate GWAS setting. Thereby, single variants associated with a trait or disease are directly coupled to their impact on a chromatin feature in a cell type. Up to 61 regulatory SNPs, called dSNPs, were associated with multiple sclerosis (MS, 4,888 cases and 10,395 controls), major depressive disorder (MDD, 1,475 cases and 2,144 controls), and height (5,974 individuals). These variants were mainly non-coding and reached at least nominal significance in classical GWAS. The prediction accuracy was higher for DeepWAS than for classical GWAS models for 91% of the genome-wide significant, MS-specific dSNPs. DSNPs were enriched in public or cohort-matched expression and methylation quantitative trait loci and we demonstrated the potential of DeepWAS to generate testable functional hypotheses based on genotype data alone. DeepWAS is available at https://github.com/cellmapslab/DeepWAS

    Dissecting the Association Between Inflammation, Metabolic Dysregulation, and Specific Depressive Symptoms: A Genetic Correlation and 2-Sample Mendelian Randomization Study.

    Get PDF
    IMPORTANCE: Observational studies highlight associations of C-reactive protein (CRP), a general marker of inflammation, and interleukin 6 (IL-6), a cytokine-stimulating CRP production, with individual depressive symptoms. However, it is unclear whether inflammatory activity is associated with individual depressive symptoms and to what extent metabolic dysregulation underlies the reported associations. OBJECTIVE: To explore the genetic overlap and associations between inflammatory activity, metabolic dysregulation, and individual depressive symptoms. GWAS DATA SOURCES: Genome-wide association study (GWAS) summary data of European individuals, including the following: CRP levels (204 402 individuals); 9 individual depressive symptoms (3 of which did not differentiate between underlying diametrically opposite symptoms [eg, insomnia and hypersomnia]) as measured with the Patient Health Questionnaire 9 (up to 117 907 individuals); summary statistics for major depression, including and excluding UK Biobank participants, resulting in sample sizes of 500 199 and up to 230 214 individuals, respectively; insomnia (up to 386 533 individuals); body mass index (BMI) (up to 322 154 individuals); and height (up to 253 280 individuals). DESIGN: In this genetic correlation and 2-sample mendelian randomization (MR) study, linkage disequilibrium score (LDSC) regression was applied to infer single-nucleotide variant-based heritability and genetic correlation estimates. Two-sample MR tested potential causal associations of genetic variants associated with CRP levels, IL-6 signaling, and BMI with depressive symptoms. The study dates were November 2019 to April 2020. RESULTS: Based on large GWAS data sources, genetic correlation analyses revealed consistent false discovery rate (FDR)-controlled associations (genetic correlation range, 0.152-0.362; FDR P = .006 to P < .001) between CRP levels and depressive symptoms that were similar in size to genetic correlations of BMI with depressive symptoms. Two-sample MR analyses suggested that genetic upregulation of IL-6 signaling was associated with suicidality (estimate [SE], 0.035 [0.010]; FDR plus Bonferroni correction P = .01), a finding that remained stable across statistical models and sensitivity analyses using alternative instrument selection strategies. Mendelian randomization analyses did not consistently show associations of higher CRP levels or IL-6 signaling with other depressive symptoms, but higher BMI was associated with anhedonia, tiredness, changes in appetite, and feelings of inadequacy. CONCLUSIONS AND RELEVANCE: This study reports coheritability between CRP levels and individual depressive symptoms, which may result from the potentially causal association of metabolic dysregulation with anhedonia, tiredness, changes in appetite, and feelings of inadequacy. The study also found that IL-6 signaling is associated with suicidality. These findings may have clinical implications, highlighting the potential of anti-inflammatory approaches, especially IL-6 blockade, as a putative strategy for suicide prevention.Wellcome Trust (grant code: 201486/Z/16/Z

    Impact on birth weight of maternal smoking throughout pregnancy mediated by DNA methylation

    Get PDF
    Background: Cigarette smoking has severe adverse health consequences in adults and in the offspring of mothers who smoke during pregnancy. One of the most widely reported effects of smoking during pregnancy is reduced birth weight which is in turn associated with chronic disease in adulthood. Epigenome-wide association studies have revealed that smokers show a characteristic “smoking methylation pattern”, and recent authors have proposed that DNA methylation mediates the impact of maternal smoking on birth weight. The aims of the present study were to replicate previous reports that methylation mediates the effect of maternal smoking on birth weight, and for the first time to investigate whether the observed mediation effects are sex-specific in order to account for known sex-specific differences in methylation levels. Methods: Methylation levels in the cord blood of 313 newborns were determined using the Illumina HumanMethylation450K Beadchip. A total of 5,527 CpG sites selected on the basis of evidence from the literature were tested. To determine whether the observed association between maternal smoking and birth weight was attributable to methylation, mediation analyses were performed for significant CpG sites. Separate analyses were then performed in males and females. Results: Following quality control, 282 newborns eventually remained in the analysis. A total of 25 mothers had smoked consistently throughout the pregnancy. The birthweigt of newborns whose mothers had smoked throughout pregnancy was reduced by &gt;200g. After correction for multiple testing, 30 CpGs showed differential methylation in the maternal smoking subgroup including top “smoking methylation pattern” genes AHRR, MYO1G, GFI1, CYP1A1, and CNTNAP2. The effect of maternal smoking on birth weight was partly mediated by the methylation of cg25325512 (PIM1); cg25949550 (CNTNAP2); and cg08699196 (ITGB7). Sex-specific analyses revealed a mediating effect for cg25949550 (CNTNAP2) in male newborns. Conclusion: The present data replicate previous findings that methylation can mediate the effect of maternal smoking on birth weight. The analysis of sex-dependent mediation effects suggests that the sex of the newborn may have an influence. Larger studies are warranted to investigate the role of both the identified differentially methylated loci and the sex of the newborn in mediating the association between maternal smoking during pregnancy and birth weight

    Epigenetic upregulation of FKBP5 by aging and stress contributes to NF-kappa B-driven inflammation and cardiovascular risk

    Get PDF
    Aging and psychosocial stress are associated with increased inflammation and disease risk, but the underlying molecular mechanisms are unclear. Because both aging and stress are also associated with lasting epigenetic changes, a plausible hypothesis is that stress along the lifespan could confer disease risk through epigenetic effects on molecules involved in inflammatory processes. Here, by combining large-scale analyses in human cohorts with experiments in cells, we report that FKBP5, a protein implicated in stress physiology, contributes to these relations. Across independent human cohorts (total n > 3,000), aging synergized with stress-related phenotypes, measured with childhood trauma and major depression questionnaires, to epigenetically up-regulate FKBP5 expression. These age/stress-related epigenetic effects were recapitulated in a cellular model of replicative senescence, whereby we exposed replicating human fibroblasts to stress (glucocorticoid) hormones. Unbiased genome-wide analyses in human blood linked higher FKBP5 mRNA with a proinflammatory profile and altered NF-kappa B-related gene networks. Accordingly, experiments in immune cells showed that higher FKBP5 promotes inflammation by strengthening the interactions of NF-kappa B regulatory kinases, whereas opposing FKBP5 either by genetic deletion (CRISPR/Cas9-mediated) or selective pharmacological inhibition prevented the effects on NF-kappa B. Further, the age/stress-related epigenetic signature enhanced FKBP5 response to NF-kappa B through a positive feedback loop and was present in individuals with a history of acute myocardial infarction, a disease state linked to peripheral inflammation. These findings suggest that aging/stress-driven FKBP5-NF-kappa B signaling mediates inflammation, potentially contributing to cardiovascular risk, and may thus point to novel biomarker and treatment possibilities.Peer reviewe

    An analysis of gene expression in PTSD implicates genes involved in the glucocorticoid receptor pathway and neural responses to stress

    Get PDF
    We examined the association between posttraumatic stress disorder (PTSD) and gene expression using whole blood samples from a cohort of trauma-exposed white non-Hispanic male veterans (115 cases and 28 controls). 10,264 probes of genes and gene transcripts were analyzed. We found 41 that were differentially expressed in PTSD cases versus controls (multiple-testing corrected p<0.05). The most significant was DSCAM, a neurological gene expressed widely in the developing brain and in the amygdala and hippocampus of the adult brain. We then examined the 41 differentially expressed genes in a meta-analysis using two replication cohorts and found significant associations with PTSD for 7 of the 41 (p<0.05), one of which (ATP6AP1L) survived multiple-testing correction. There was also broad evidence of overlap across the discovery and replication samples for the entire set of genes implicated in the discovery data based on the direction of effect and an enrichment of p<0.05 significant probes beyond what would be expected under the null. Finally, we found that the set of differentially expressed genes from the discovery sample was enriched for genes responsive to glucocorticoid signaling with most showing reduced expression in PTSD cases compared to controls

    Novel multiple sclerosis susceptibility loci implicated in epigenetic regulation.

    Get PDF
    We conducted a genome-wide association study (GWAS) on multiple sclerosis (MS) susceptibility in German cohorts with 4888 cases and 10,395 controls. In addition to associations within the major histocompatibility complex (MHC) region, 15 non-MHC loci reached genome-wide significance. Four of these loci are novel MS susceptibility loci. They map to the genes L3MBTL3, MAZ, ERG, and SHMT1. The lead variant at SHMT1 was replicated in an independent Sardinian cohort. Products of the genes L3MBTL3, MAZ, and ERG play important roles in immune cell regulation. SHMT1 encodes a serine hydroxymethyltransferase catalyzing the transfer of a carbon unit to the folate cycle. This reaction is required for regulation of methylation homeostasis, which is important for establishment and maintenance of epigenetic signatures. Our GWAS approach in a defined population with limited genetic substructure detected associations not found in larger, more heterogeneous cohorts, thus providing new clues regarding MS pathogenesis
    corecore